Measurement of Direct Photons in √s=200GeV p+p collisions

K.Okada (RBRC)
For the PHENIX collaboration
JPS/DNP meeting
September 20, 2005

Motivations

- —Test of our theoretical understanding based on QCD
- —Direct information on gluon distribution in the proton With polarized beam at RHIC, it is a probe for gluon polarization
- —Reference for A+A collisions

Data

RHIC run3 p+p

2003 April-May √s=200GeV Proton-proton collisions Luminosity= 240nb⁻¹

RHIC-PHENIX detector

Central Arm (West)

(Rapidity |y| < 0.35)

Electromagnetic Calorimeter (EMCal)

Photon detection

High granularity (~10*10mrad²)

Drift chamber (DC)

Charged hadron veto

Beam forward / backward

(Rapidity 3.1 < |y| < 3.9)

Beam-beam counter (BBC)

Triggering and vertex determination Luminosity measurement

BBC and EMCal Trigger for the data taking

Analysis Strategy

Photon cluster selection

- —Photon shape cut (important to remove merged π^0 clusters)
- —Charged veto with DC track
- —Timing cut

π^0 photon tag

- —Count photons with π^0 partner
- —Estimate π^0 photons without partner (it is only kinematics and geometrical issue)

Other hadron to photon estimation (η , ω , etc.)

—Scale π^0 photon contribution by their production and branching ratio

The rest is our direct photon signal !! (Subtraction method)

Subtraction method

JPS/DNP Sep. 2005 K.Okada (RBRC)

Subtraction method

NLO pQCD calculation explains the data well.

At low pT, the data show an excess.

- —with large systematic error
- —but may be soft physics contribution as well

Isolation cut method: 2 goals

— Check if our direct photon signal is isolated.

— A confirmation is done by applying the same isolation cut on photons from π^0

Isolation cut method: 2 goals

Can we extract the contribution of direct production?

Isolation cut with PHENIX

■ Starting from isolated photons

$$0.1E\gamma > E_{cone} (R=0.5rad)$$

E_{cone}: photon energy

+ charged particle momentum

■ For the estimation of hadron contribution,

"Isolated π^0 photon" is introduced

They have π^0 partner.

They pass the isolation cut when the partner energy is excluded.

Isolation cut method

Isolation cut $0.1*E\gamma > E_{cone(R=0.5rad)}$

No correction for isolation cut efficience was applied.

10

JPS/DNP Sep. 2005 K.Okada (RBRC)

Ratios

1

Direct photon : isolation / subtraction

Photon from $\pi^0\,$: isolated photon / all

Isolation cut $0.1*E\gamma > E_{cone(R=0.5rad)}$

Photons from π^0 is reduced by the isolation cut. Direct photons are clearly isolated at high pT region.

Iso/sub ratio with a theory calculation

At high pT, theory predictions are consistent with the data.

12

Summary

We measured direct photon cross section in $\sqrt{s}=200$ GeV p+p collisions.

Two methods: subtraction and isolation cut

■ Subtraction method

NLO pQCD calculation explains the data well.

An excess in low pT region?

Isolation cut method

It confirmed the reduction of photons from π^0 .

Direct photon signal is isolated in high pT region.

Level of the ratio of isolation cut method to subtraction method is same as the theory prediction.